44 research outputs found

    Experimental investigation of planar strained methane-air and ethylene-air flames

    Get PDF
    The extinction of planar strained methane-air flames in the stagnation-point flow is studied. A thermal analysis has been conducted in order to build a new copper stagnation plate which can be heated up to 1000K, and allows investigation of downstream heat loss as extinction driving mechanism. Since premixed stagnation flames are mostly sensitive to the composition of the mixture, axial velocity and CH radical profiles are simultaneously measured for different equivalence ratios, using respectively Particle Streak Velocimetry (PSV) and Planar Laser Induced Fluorescence (PLIF). These are compared to simulations using CANTERA stagnation flow code with a multicomponent molecular transport model, with the following chemical kinetics mechanisms: GRI-MECH 3.0, the C3-Davis, San-Diego 200308 and San-Diego 200503 mechanisms. In methane-air flames, simulations accurately predict the velocity and CH profiles from Phi=0.8 to Phi=1.2, but the flame speed turns out to be overpredicted at Phi=0.7 by all mechanisms except the C3-Davis mechanism (see Bergthorson et al. 2005a). The experiment at Phi=1.3 would need to be reconducted. Also, measured relative concentrations of CH are compared to numerical predictions using each of the four mechanisms cited above. Composition variations impact on ethylene-air flames was also investigated due to a peculiar jump in the overprediction of flame velocities from Phi=1.6 to Phi=1.8 (Bergthorson 2005). This peculiar feature was found to be repeatable, but the cause remains unclear. Methane-air laminar flame speeds Su0 were computed using CANTERA freely propagating flame code for the following chemical kinetics mechanisms: GRI-MECH 3.0, the C3-Davis mechanism, the San Diego 200308, 200503, and 200506 mechanisms, for variable pressures (1,2,5,10,20 atm) and equivalence ratios (0.6-1.4). Even for methane, whose chemistry is one of the best understood, the scatter between the different mechanisms is significant. Both composition and pressure were found to affect Su0 substantially, although composition variations seem to excite the differences in the predictions among the different mechanisms the most

    Particle streak velocimetry and CH laser-induced fluorescence diagnostics in strained, premixed, methane–air flames

    Get PDF
    We present the use of simultaneous particle streak velocimetry (PSV) and CH planar laser-induced fluorescence (PLIF) diagnostics in the study of planar, strained, premixed, methane–air flames, stabilized in a jet-wall stagnation flow. Both PSV and PLIF data are imaged at high spatial resolution and sufficiently high framing rates to permit an assessment of flame planarity and stability. Concurrent measurements of mixture composition, (Bernoulli) static-pressure drop, and stagnation-plate temperature provide accurate boundary conditions for numerical simulations. The new PSV implementation is characterized by very low particle loading, high accuracy, and permits short recording times. This PSV implementation and analysis methodology is validated through comparisons with previous laminar flame-speed data and detailed numerical simulations. The reported diagnostic suite facilitates the investigation of strained hydrocarbon–air flames, as a function of nozzle-plate separation to jet-diameter ratio, L/d, and equivalence ratio, ɸ. Methane–air flames are simulated using a one-dimensional streamfunction approximation, with full chemistry (GRI-Mech 3.0), and multi-component transport. In general, we find good agreement between experiments and simulations if boundary conditions are specified from measured velocity fields. Methane–air flame strength appears to be slightly overpredicted, with the largest disagreements for lean flames

    The ignition of fine iron particles in the Knudsen transition regime

    Get PDF
    A theoretical model is considered to predict the minimum ambient gas temperature at which fine iron particles can undergo thermal runaway--the ignition temperature. The model accounts for Knudsen transition transport effects, which become significant when the particle size is comparable to, or smaller than, the molecular mean free path of the surrounding gas. Two kinetic models for the high-temperature solid-phase oxidation of iron are analyzed. The first model (parabolic kinetics) considers the inhibiting effect of the iron oxide layers at the particle surface on the rate of oxidation, and a kinetic rate independent of the gaseous oxidizer concentration. The ignition temperature is solved as a function of particle size and initial oxide layer thickness with an unsteady analysis considering the growth of the oxide layers. In the small-particle limit, the thermal insulating effect of transition heat transport can lead to a decrease of ignition temperature with decreasing particle size. However, the presence of the oxide layer slows the reaction kinetics and its increasing proportion in the small-particle limit can lead to an increase of ignition temperature with decreasing particle size. This effect is observed for sufficiently large initial oxide layer thicknesses. The continuum transport model is shown to predict the ignition temperature of iron particles exceeding an initial diameter of 30 μ\mum to a difference of 3% (30 K) or less when compared to the transition transport model. The second kinetic model (first-order kinetics) considers a porous, non-hindering oxide layer, and a linear dependence of the kinetic rate of oxidation on the gaseous oxidizer concentration. The ignition temperature is resolved as a function of particle size with the transition and continuum transport models, and the differences between the ignition characteristics predicted by the two models are discussed

    Particle streak velocimetry and CH laser-induced fluorescence diagnostics in strained, premixed, methane–air flames

    Get PDF
    We present the use of simultaneous particle streak velocimetry (PSV) and CH planar laser-induced fluorescence (PLIF) diagnostics in the study of planar, strained, premixed, methane–air flames, stabilized in a jet-wall stagnation flow. Both PSV and PLIF data are imaged at high spatial resolution and sufficiently high framing rates to permit an assessment of flame planarity and stability. Concurrent measurements of mixture composition, (Bernoulli) static-pressure drop, and stagnation-plate temperature provide accurate boundary conditions for numerical simulations. The new PSV implementation is characterized by very low particle loading, high accuracy, and permits short recording times. This PSV implementation and analysis methodology is validated through comparisons with previous laminar flame-speed data and detailed numerical simulations. The reported diagnostic suite facilitates the investigation of strained hydrocarbon–air flames, as a function of nozzle-plate separation to jet-diameter ratio, L/d, and equivalence ratio, ɸ. Methane–air flames are simulated using a one-dimensional streamfunction approximation, with full chemistry (GRI-Mech 3.0), and multi-component transport. In general, we find good agreement between experiments and simulations if boundary conditions are specified from measured velocity fields. Methane–air flame strength appears to be slightly overpredicted, with the largest disagreements for lean flames

    Experiments and modelling of premixed laminar stagnation flame hydrodynamics

    Get PDF
    The hydrodynamics of a reacting impinging laminar jet, or stagnation flame, is studied experimentally and modelled using large activation energy asymptotic models and numerical simulations. The jet-wall geometry yields a stable, steady flame and allows for precise measurement and specification of all boundary conditions on the flow. Laser diagnostic techniques are used to measure velocity and CH radical profiles. The axial velocity profile through a premixed stagnation flame is found to be independent of the nozzle-to-wall separation distance at a fixed nozzle pressure drop, in accord with results for non-reacting impinging laminar jet flows, and thus the strain rate in these flames is only a function of the pressure drop across the nozzle. The relative agreement between the numerical simulations and experiment using a particular combustion chemistry model is found to be insensitive to both the strain rate imposed on the flame and the relative amounts of oxygen and nitrogen in the premixed gas, when the velocity boundary conditions on the simulations are applied in a manner consistent with the formulation of the streamfunction hydrodynamic model. The analytical model predicts unburned, or reference, flame speeds that are slightly lower than the detailed numerical simulations in all cases and the observed dependence of this reference flame speed on strain rate is stronger than that predicted by the model. Experiment and simulation are in excellent agreement for near-stoichiometric methane–air flames, but deviations are observed for ethylene flames with several of the combustion models used. The discrepancies between simulation and experimental profiles are quantified in terms of differences between measured and predicted reference flame speeds, or position of the CH-profile maxima, which are shown to be directly correlated. The direct comparison of the measured and simulated reference flame speeds, ΔS_u, can be used to infer the difference between the predicted flame speed of the combustion model employed and the true laminar flame speed of the mixture, ΔS^O_f, i.e. ΔS_u=ΔS^O_f, consistent with recently proposed nonlinear extrapolation techniques

    Combustion behavior of single iron particles-part I:An experimental study in a drop-tube furnace under high heating rates and high temperatures

    Get PDF
    Micrometric spherical particles of iron in two narrow size ranges of (38–45) µm and (45–53) µm were injected in a bench scale, transparent drop-tube furnace (DTF), electrically heated to 1400 K. Upon experiencing high heating rates (104–105 K/s) the iron particles ignited and burned. Their combustion behavior was monitored pyrometrically and cinematographically at three different oxygen mole fractions (21%, 50% and 100%) in nitrogen. The results revealed that iron particles ignited readily and exhibited a bright stage of combustion followed by a dimmer stage. There was evidence of formation of envelope micro-flames around iron particles (nanometric particle mantles) during the bright stage of combustion. As the burning iron particles fell by gravity in the DTF, contrails of these fine particles formed in their wakes. Peak temperatures of the envelope flames were in the range of 2500 K in air, climbing to 2800 K in either 50% or 100% O2. Total luminous combustion durations of particles, in the aforesaid size ranges, were in the range of 40–65 ms. Combustion products were bimodal in size distribution, consisting of micrometric black magnetite particles (Fe3O4), of sizes similar to the iron particle precursors, and reddish nanometric iron oxide particles consisting mostly of hematite (Fe2O3).</p

    Impinging laminar jets at moderate Reynolds numbers and separation distances

    Get PDF
    An experimental and numerical study of impinging, incompressible, axisymmetric, laminar jets is described, where the jet axis of symmetry is aligned normal to the wall. Particle streak velocimetry (PSV) is used to measure axial velocities along the centerline of the flow field. The jet-nozzle pressure drop is measured simultaneously and determines the Bernoulli velocity. The flow field is simulated numerically by an axisymmetric Navier-Stokes spectral-element code, an axisymmetric potential-flow model, and an axisymmetric one-dimensional stream-function approximation. The axisymmetric viscous and potential-flow simulations include the nozzle in the solution domain, allowing nozzle-wall proximity effects to be investigated. Scaling the centerline axial velocity by the Bernoulli velocity collapses the experimental velocity profiles onto a single curve that is independent of the nozzle-to-plate separation distance. Axisymmetric direct numerical simulations yield good agreement with experiment and confirm the velocity profile scaling. Potential-flow simulations reproduce the collapse of the data; however, viscous effects result in disagreement with experiment. Axisymmetric one-dimensional stream-function simulations can predict the flow in the stagnation region if the boundary conditions are correctly specified. The scaled axial velocity profiles are well characterized by an error function with one Reynolds-number-dependent parameter. Rescaling the wall-normal distance by the boundary-layer displacement-thickness-corrected diameter yields a collapse of the data onto a single curve that is independent of the Reynolds number. These scalings allow the specification of an analytical expression for the velocity profile of an impinging laminar jet over the Reynolds number range investigated of 200 ≤ Re ≤ 1400.Jeffrey M. Bergthorson, Kazuo Sone, Trent W. Mattner, Paul E. Dimotakis, David G. Goodwin, and Dan I. Meiro
    corecore